Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Wellcome Open Res ; 5: 287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34632085

RESUMO

Background: The -α 3.7I-thalassaemia deletion is very common throughout Africa because it protects against malaria. When undertaking studies to investigate human genetic adaptations to malaria or other diseases, it is important to account for any confounding effects of α-thalassaemia to rule out spurious associations. Methods: In this study we have used direct α-thalassaemia genotyping to understand why GWAS data from a large malaria association study in Kilifi Kenya did not identify the α-thalassaemia signal. We then explored the potential use of a number of new approaches to using GWAS data for imputing α-thalassaemia as an alternative to direct genotyping by PCR. Results: We found very low linkage-disequilibrium of the directly typed data with the GWAS SNP markers around α-thalassaemia and across the haemoglobin-alpha ( HBA) gene region, which along with a complex haplotype structure, could explain the lack of an association signal from the GWAS SNP data. Some indirect typing methods gave results that were in broad agreement with those derived from direct genotyping and could identify an association signal, but none were sufficiently accurate to allow correct interpretation compared with direct typing, leading to confusing or erroneous results. Conclusions: We conclude that going forwards, direct typing methods such as PCR will still be required to account for α-thalassaemia in GWAS studies.

2.
Science ; 356(6343)2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28522690

RESUMO

The malaria parasite Plasmodium falciparum invades human red blood cells by a series of interactions between host and parasite surface proteins. By analyzing genome sequence data from human populations, including 1269 individuals from sub-Saharan Africa, we identify a diverse array of large copy-number variants affecting the host invasion receptor genes GYPA and GYPB We find that a nearby association with severe malaria is explained by a complex structural rearrangement involving the loss of GYPB and gain of two GYPB-A hybrid genes, which encode a serologically distinct blood group antigen known as Dantu. This variant reduces the risk of severe malaria by 40% and has recently increased in frequency in parts of Kenya, yet it appears to be absent from west Africa. These findings link structural variation of red blood cell invasion receptors with natural resistance to severe malaria.


Assuntos
Resistência à Doença/genética , Eritrócitos/parasitologia , Glicoforinas , Interações Hospedeiro-Parasita/genética , Malária Falciparum/genética , Modelos Moleculares , Adulto , África Subsaariana , Criança , Variações do Número de Cópias de DNA/genética , Frequência do Gene , Genoma Humano/genética , Glicoforinas/química , Glicoforinas/genética , Glicoforinas/metabolismo , Humanos , Estrutura Secundária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
3.
Elife ; 62017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067620

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is believed to confer protection against Plasmodium falciparum malaria, but the precise nature of the protective effecthas proved difficult to define as G6PD deficiency has multiple allelic variants with different effects in males and females, and it has heterogeneous effects on the clinical outcome of P. falciparum infection. Here we report an analysis of multiple allelic forms of G6PD deficiency in a large multi-centre case-control study of severe malaria, using the WHO classification of G6PD mutations to estimate each individual's level of enzyme activity from their genotype. Aggregated across all genotypes, we find that increasing levels of G6PD deficiency are associated with decreasing risk of cerebral malaria, but with increased risk of severe malarial anaemia. Models of balancing selection based on these findings indicate that an evolutionary trade-off between different clinical outcomes of P. falciparum infection could have been a major cause of the high levels of G6PD polymorphism seen in human populations.


Assuntos
Anemia/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/complicações , Malária Cerebral/epidemiologia , Malária Falciparum/epidemiologia , Alelos , Anemia/patologia , Estudos de Casos e Controles , Glucosefosfato Desidrogenase/genética , Humanos , Malária Cerebral/patologia , Malária Falciparum/patologia , Medição de Risco
4.
Elife ; 52016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27324836

RESUMO

Similarity between two individuals in the combination of genetic markers along their chromosomes indicates shared ancestry and can be used to identify historical connections between different population groups due to admixture. We use a genome-wide, haplotype-based, analysis to characterise the structure of genetic diversity and gene-flow in a collection of 48 sub-Saharan African groups. We show that coastal populations experienced an influx of Eurasian haplotypes over the last 7000 years, and that Eastern and Southern Niger-Congo speaking groups share ancestry with Central West Africans as a result of recent population expansions. In fact, most sub-Saharan populations share ancestry with groups from outside of their current geographic region as a result of gene-flow within the last 4000 years. Our in-depth analysis provides insight into haplotype sharing across different ethno-linguistic groups and the recent movement of alleles into new environments, both of which are relevant to studies of genetic epidemiology.


Assuntos
População Negra , Genoma Humano , Migração Humana , África Subsaariana , Fluxo Gênico , Variação Genética , Haplótipos , Humanos
5.
Glob Health Action ; 7: 25593, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25377342

RESUMO

BACKGROUND: The vast majority of deaths in the Kilifi study area are not recorded through official systems of vital registration. As a result, few data are available regarding causes of death in this population. OBJECTIVE: To describe the causes of death (CODs) among residents of all ages within the Kilifi Health and Demographic Surveillance System (KHDSS) on the coast of Kenya. DESIGN: Verbal autopsies (VAs) were conducted using the 2007 World Health Organization (WHO) standard VA questionnaires, and VA data further transformed to align with the 2012 WHO VA instrument. CODs were then determined using the InterVA-4 computer-based probabilistic model. RESULTS: Five thousand one hundred and eighty seven deaths were recorded between January 2008 and December 2011. VA interviews were completed for 4,460 (86%) deaths. Neonatal pneumonia and birth asphyxia were the main CODs in neonates; pneumonia and malaria were the main CODs among infants and children aged 1-4, respectively, while HIV/AIDS was the main COD for adult women of reproductive age. Road traffic accidents were more commonly observed among men than women. Stroke and neoplasms were common CODs among the elderly over the age of 65. CONCLUSIONS: We have established the main CODs among people of all ages within the area served by the KHDSS on the coast of Kenya using the 2007 WHO VA questionnaire coded using InterVA-4. We hope that our data will allow local health planners to estimate the burden of various diseases and to allocate their limited resources more appropriately.


Assuntos
Causas de Morte , Coleta de Dados/métodos , Mortalidade/tendências , Adolescente , Adulto , Idoso , Autopsia , Criança , Pré-Escolar , Demografia , Feminino , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Masculino , Pessoa de Meia-Idade , Vigilância da População , Inquéritos e Questionários
6.
BMC Med ; 12: 65, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24755265

RESUMO

BACKGROUND: Sickle cell disease (SCD) is common in many parts of sub-Saharan Africa (SSA), where it is associated with high early mortality. In the absence of newborn screening, most deaths among children with SCD go unrecognized and unrecorded. As a result, SCD does not receive the attention it deserves as a leading cause of death among children in SSA. In the current study, we explored the potential utility of verbal autopsy (VA) as a tool for attributing underlying cause of death (COD) in children to SCD. METHODS: We used the 2007 WHO Sample Vital Registration with Verbal Autopsy (SAVVY) VA tool to determine COD among child residents of the Kilifi Health and Demographic Surveillance System (KHDSS), Kenya, who died between January 2008 and April 2011. VAs were coded both by physician review (physician coded verbal autopsy, PCVA) using COD categories based on the WHO International Classification of Diseases 10th Edition (ICD-10) and by using the InterVA-4 probabilistic model after extracting data according to the 2012 WHO VA standard. Both of these methods were validated against one of two gold standards: hospital ICD-10 physician-assigned COD for children who died in Kilifi District Hospital (KDH) and, where available, laboratory confirmed SCD status for those who died in the community. RESULTS: Overall, 6% and 5% of deaths were attributed to SCD on the basis of PCVA and the InterVA-4 model, respectively. Of the total deaths, 22% occurred in hospital, where the agreement coefficient (AC1) for SCD between PCVA and hospital physician diagnosis was 95.5%, and agreement between InterVA-4 and hospital physician diagnosis was 96.9%. Confirmatory laboratory evidence of SCD status was available for 15% of deaths, in which the AC1 against PCVA was 87.5%. CONCLUSIONS: Other recent studies and provisional data from this study, outlining the importance of SCD as a cause of death in children in many parts of the developing world, contributed to the inclusion of specific SCD questions in the 2012 version of the WHO VA instruments, and a specific code for SCD has now been included in the WHO and InterVA-4 COD listings. With these modifications, VA may provide a useful approach to quantifying the contribution of SCD to childhood mortality in rural African communities. Further studies will be needed to evaluate the generalizability of our findings beyond our local context.


Assuntos
Anemia Falciforme/mortalidade , Autopsia , Prontuários Médicos/estatística & dados numéricos , África Subsaariana/epidemiologia , Causas de Morte , Criança , Feminino , Humanos , Recém-Nascido , Classificação Internacional de Doenças , Quênia/epidemiologia , Masculino , Modelos Estatísticos , População Rural
7.
PLoS Genet ; 9(5): e1003509, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23717212

RESUMO

Combining data from genome-wide association studies (GWAS) conducted at different locations, using genotype imputation and fixed-effects meta-analysis, has been a powerful approach for dissecting complex disease genetics in populations of European ancestry. Here we investigate the feasibility of applying the same approach in Africa, where genetic diversity, both within and between populations, is far more extensive. We analyse genome-wide data from approximately 5,000 individuals with severe malaria and 7,000 population controls from three different locations in Africa. Our results show that the standard approach is well powered to detect known malaria susceptibility loci when sample sizes are large, and that modern methods for association analysis can control the potential confounding effects of population structure. We show that pattern of association around the haemoglobin S allele differs substantially across populations due to differences in haplotype structure. Motivated by these observations we consider new approaches to association analysis that might prove valuable for multicentre GWAS in Africa: we relax the assumptions of SNP-based fixed effect analysis; we apply Bayesian approaches to allow for heterogeneity in the effect of an allele on risk across studies; and we introduce a region-based test to allow for heterogeneity in the location of causal alleles.


Assuntos
População Negra/genética , Estudo de Associação Genômica Ampla , Hemoglobina Falciforme/genética , Malária/genética , África , Teorema de Bayes , Mapeamento Cromossômico , Heterogeneidade Genética , Predisposição Genética para Doença , Variação Genética , Genética Populacional , Genoma Humano , Haplótipos , Humanos , Desequilíbrio de Ligação , Malária/epidemiologia , Malária/patologia , Polimorfismo de Nucleotídeo Único
8.
Biometrics ; 67(2): 611-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20618307

RESUMO

One of the key ingredients in drug discovery is the derivation of conceptual templates called pharmacophores. A pharmacophore model characterizes the physicochemical properties common to all active molecules, called ligands, bound to a particular protein receptor, together with their relative spatial arrangement. Motivated by this important application, we develop a Bayesian hierarchical model for the derivation of pharmacophore templates from multiple configurations of point sets, partially labeled by the atom type of each point. The model is implemented through a multistage template hunting algorithm that produces a series of templates that capture the geometrical relationship of atoms matched across multiple configurations. Chemical information is incorporated by distinguishing between atoms of different elements, whereby different elements are less likely to be matched than atoms of the same element. We illustrate our method through examples of deriving templates from sets of ligands that all bind structurally related protein active sites and show that the model is able to retrieve the key pharmacophore features in two test cases.


Assuntos
Teorema de Bayes , Biologia Computacional/métodos , Desenho de Fármacos , Algoritmos , Biometria/métodos , Domínio Catalítico , Descoberta de Drogas , Proteínas/química , Relação Estrutura-Atividade
9.
J Comput Biol ; 15(9): 1209-20, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18973436

RESUMO

We propose a simple procedure for generating virtual protein C(alpha) traces. One of the key ingredients of our method, to build a three-dimensional structure from a random sequence of amino acids, is to work directly on torsional angles of the chain which we sample from a von Mises distribution. With simple modeling of the hydrophobic effect in protein folding, the procedure produces compact and globular structures. Some characteristics of real proteins (i.e., compactness and globularity) are well mimicked by this procedure. These virtual traces are used to assess algorithms for matching protein structures or functional sites.


Assuntos
Simulação por Computador , Modelos Estatísticos , Dobramento de Proteína , Algoritmos , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica
10.
BMC Bioinformatics ; 8: 257, 2007 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-17640336

RESUMO

BACKGROUND: Matching functional sites is a key problem for the understanding of protein function and evolution. The commonly used graph theoretic approach, and other related approaches, require adjustment of a matching distance threshold a priori according to the noise in atomic positions. This is difficult to pre-determine when matching sites related by varying evolutionary distances and crystallographic precision. Furthermore, sometimes the graph method is unable to identify alternative but important solutions in the neighbourhood of the distance based solution because of strict distance constraints. We consider the Bayesian approach to improve graph based solutions. In principle this approach applies to other methods with strict distance matching constraints. The Bayesian method can flexibly incorporate all types of prior information on specific binding sites (e.g. amino acid types) in contrast to combinatorial formulations. RESULTS: We present a new meta-algorithm for matching protein functional sites (active sites and ligand binding sites) based on an initial graph matching followed by refinement using a Markov chain Monte Carlo (MCMC) procedure. This procedure is an innovative extension to our recent work. The method accounts for the 3-dimensional structure of the site as well as the physico-chemical properties of the constituent amino acids. The MCMC procedure can lead to a significant increase in the number of significant matches compared to the graph method as measured independently by rigorously derived p-values. CONCLUSION: MCMC refinement step is able to significantly improve graph based matches. We apply the method to matching NAD(P)(H) binding sites within single Rossmann fold families, between different families in the same superfamily, and in different folds. Within families sites are often well conserved, but there are examples where significant shape based matches do not retain similar amino acid chemistry, indicating that even within families the same ligand may be bound using substantially different physico-chemistry. We also show that the procedure finds significant matches between binding sites for the same co-factor in different families and different folds.


Assuntos
Teorema de Bayes , Proteínas/química , 17-Hidroxiesteroide Desidrogenases/química , Álcool Desidrogenase/química , Algoritmos , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Bases de Dados Factuais , Flavina-Adenina Dinucleotídeo/química , Ligantes , Funções Verossimilhança , Cadeias de Markov , Método de Monte Carlo , NADP/química , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...